22
May
Retrieval Augmented Generation (RAG) models have emerged as a promising approach to enhance the capabilities of language models by incorporating external knowledge from large text corpora. However, despite their impressive performance in various natural language processing tasks, RAG models still face several limitations that need to be addressed. Naive RAG models face limitations such as missing content, reasoning mismatch, and challenges in handling multimodal data. Although they can retrieve relevant information, they may struggle to generate complete and coherent responses when required information is absent, leading to incomplete or inaccurate outputs. Additionally, even with relevant information retrieved, the models may…