SafePowerGraph-HIL: Real-Time HIL Validation of Heterogeneous GNNs for Bridging Sim-to-Real Gap in Power Grids

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.12427v1 Announce Type: new
Abstract: As machine learning (ML) techniques gain prominence in power system research, validating these methods’ effectiveness under real-world conditions requires real-time hardware-in-the-loop (HIL) simulations. HIL simulation platforms enable the integration of computational models with physical devices, allowing rigorous testing across diverse scenarios critical to system resilience and reliability. In this study, we develop a SafePowerGraph-HIL framework that utilizes HIL simulations on the IEEE 9-bus system, modeled in Hypersim, to generate high-fidelity data, which is then transmitted in real-time via SCADA to an AWS cloud database before being input into a Heterogeneous Graph Neural Network (HGNN) model designed for power system state estimation and dynamic analysis. By leveraging Hypersim’s capabilities, we simulate complex grid interactions, providing a robust dataset that captures critical parameters for HGNN training. The trained HGNN is subsequently validated using newly generated data under varied system conditions, demonstrating accuracy and robustness in predicting power system states. The results underscore the potential of integrating HIL with advanced neural network architectures to enhance the real-time operational capabilities of power systems. This approach represents a significant advancement toward the development of intelligent, adaptive control strategies that support the robustness and resilience of evolving power grids.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.