Religious Bias Landscape in Language and Text-to-Image Models: Analysis, Detection, and Debiasing Strategies

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.08441v1 Announce Type: new
Abstract: Note: This paper includes examples of potentially offensive content related to religious bias, presented solely for academic purposes. The widespread adoption of language models highlights the need for critical examinations of their inherent biases, particularly concerning religion. This study systematically investigates religious bias in both language models and text-to-image generation models, analyzing both open-source and closed-source systems. We construct approximately 400 unique, naturally occurring prompts to probe language models for religious bias across diverse tasks, including mask filling, prompt completion, and image generation. Our experiments reveal concerning instances of underlying stereotypes and biases associated disproportionately with certain religions. Additionally, we explore cross-domain biases, examining how religious bias intersects with demographic factors such as gender, age, and nationality. This study further evaluates the effectiveness of targeted debiasing techniques by employing corrective prompts designed to mitigate the identified biases. Our findings demonstrate that language models continue to exhibit significant biases in both text and image generation tasks, emphasizing the urgent need to develop fairer language models to achieve global acceptability.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.