Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort?

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.05000v1 Announce Type: new
Abstract: Accurate load forecasting is crucial for predictive control in many energy domain applications, with significant economic and ecological implications. To address these implications, this study provides an extensive benchmark of state-of-the-art deep learning models for short-term load forecasting in energy communities. Namely, LSTM, xLSTM, and Transformers are compared with benchmarks such as KNNs, synthetic load models, and persistence forecasting models. This comparison considers different scales of aggregation (e.g., number of household loads) and varying training data availability (e.g., training data time spans). Further, the impact of transfer learning from synthetic (standard) load profiles and the deep learning model size (i.e., parameter count) is investigated in terms of forecasting error. Implementations are publicly available and other researchers are encouraged to benchmark models using this framework. Additionally, a comprehensive case study, comprising an energy community of 50 households and a battery storage demonstrates the beneficial financial implications of accurate predictions. Key findings of this research include: (1) Simple persistence benchmarks outperform deep learning models for short-term load forecasting when the available training data is limited to six months or less; (2) Pretraining with publicly available synthetic load profiles improves the normalized Mean Absolute Error (nMAE) by an average of 1.28%pt during the first nine months of training data; (3) Increased aggregation significantly enhances the performance of deep learning models relative to persistence benchmarks; (4) Improved load forecasting, with an nMAE reduction of 1.1%pt, translates to an economic benefit of approximately 600EUR per year in an energy community comprising 50 households.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.