SEGT: A General Spatial Expansion Group Transformer for nuScenes Lidar-based Object Detection Task

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.09658v1 Announce Type: new
Abstract: In the technical report, we present a novel transformer-based framework for nuScenes lidar-based object detection task, termed Spatial Expansion Group Transformer (SEGT). To efficiently handle the irregular and sparse nature of point cloud, we propose migrating the voxels into distinct specialized ordered fields with the general spatial expansion strategies, and employ group attention mechanisms to extract the exclusive feature maps within each field. Subsequently, we integrate the feature representations across different ordered fields by alternately applying diverse expansion strategies, thereby enhancing the model’s ability to capture comprehensive spatial information. The method was evaluated on the nuScenes lidar-based object detection test dataset, achieving an NDS score of 73.5 without Test-Time Augmentation (TTA) and 74.2 with TTA, demonstrating the effectiveness of the proposed method.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.