ARTeFACT: Benchmarking Segmentation Models on Diverse Analogue Media Damage

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.04580v1 Announce Type: new
Abstract: Accurately detecting and classifying damage in analogue media such as paintings, photographs, textiles, mosaics, and frescoes is essential for cultural heritage preservation. While machine learning models excel in correcting degradation if the damage operator is known a priori, we show that they fail to robustly predict where the damage is even after supervised training; thus, reliable damage detection remains a challenge. Motivated by this, we introduce ARTeFACT, a dataset for damage detection in diverse types analogue media, with over 11,000 annotations covering 15 kinds of damage across various subjects, media, and historical provenance. Furthermore, we contribute human-verified text prompts describing the semantic contents of the images, and derive additional textual descriptions of the annotated damage. We evaluate CNN, Transformer, diffusion-based segmentation models, and foundation vision models in zero-shot, supervised, unsupervised and text-guided settings, revealing their limitations in generalising across media types. Our dataset is available at $href{https://daniela997.github.io/ARTeFACT/}{https://daniela997.github.io/ARTeFACT/}$ as the first-of-its-kind benchmark for analogue media damage detection and restoration.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.