Successes and Limitations of Object-centric Models at Compositional Generalisation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


[Submitted on 25 Dec 2024]

View a PDF of the paper titled Successes and Limitations of Object-centric Models at Compositional Generalisation, by Milton L. Montero and Jeffrey S. Bowers and Gaurav Malhotra

View PDF
HTML (experimental)

Abstract:In recent years, it has been shown empirically that standard disentangled latent variable models do not support robust compositional learning in the visual domain. Indeed, in spite of being designed with the goal of factorising datasets into their constituent factors of variations, disentangled models show extremely limited compositional generalisation capabilities. On the other hand, object-centric architectures have shown promising compositional skills, albeit these have 1) not been extensively tested and 2) experiments have been limited to scene composition — where models must generalise to novel combinations of objects in a visual scene instead of novel combinations of object properties. In this work, we show that these compositional generalisation skills extend to this later setting. Furthermore, we present evidence pointing to the source of these skills and how they can be improved through careful training. Finally, we point to one important limitation that still exists which suggests new directions of research.

Submission history

From: Milton Llera Montero [view email]
[v1]
Wed, 25 Dec 2024 02:25:12 UTC (1,186 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.