SPEER: Sentence-Level Planning of Long Clinical Summaries via Embedded Entity Retrieval

Pile-T5


View a PDF of the paper titled SPEER: Sentence-Level Planning of Long Clinical Summaries via Embedded Entity Retrieval, by Griffin Adams and 2 other authors

View PDF

Abstract:Clinician must write a lengthy summary each time a patient is discharged from the hospital. This task is time-consuming due to the sheer number of unique clinical concepts covered in the admission. Identifying and covering salient entities is vital for the summary to be clinically useful. We fine-tune open-source LLMs (Mistral-7B-Instruct and Zephyr-7B-beta) on the task and find that they generate incomplete and unfaithful summaries. To increase entity coverage, we train a smaller, encoder-only model to predict salient entities, which are treated as content-plans to guide the LLM. To encourage the LLM to focus on specific mentions in the source notes, we propose SPEER: Sentence-level Planning via Embedded Entity Retrieval. Specifically, we mark each salient entity span with special “{ }” boundary tags and instruct the LLM to retrieve marked spans before generating each sentence. Sentence-level planning acts as a form of state tracking in that the model is explicitly recording the entities it uses. We fine-tune Mistral and Zephyr variants on a large-scale, diverse dataset of ~167k in-patient hospital admissions and evaluate on 3 datasets. SPEER shows gains in both coverage and faithfulness metrics over non-guided and guided baselines.

Submission history

From: Griffin Adams [view email]
[v1]
Thu, 4 Jan 2024 17:23:44 UTC (8,102 KB)
[v2]
Thu, 26 Sep 2024 19:07:30 UTC (9,315 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.