Confident magnitude-based neural network pruning

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2408.04759v1 Announce Type: new
Abstract: Pruning neural networks has proven to be a successful approach to increase the efficiency and reduce the memory storage of deep learning models without compromising performance. Previous literature has shown that it is possible to achieve a sizable reduction in the number of parameters of a deep neural network without deteriorating its predictive capacity in one-shot pruning regimes. Our work builds beyond this background in order to provide rigorous uncertainty quantification for pruning neural networks reliably, which has not been addressed to a great extent in previous literature focusing on pruning methods in computer vision settings. We leverage recent techniques on distribution-free uncertainty quantification to provide finite-sample statistical guarantees to compress deep neural networks, while maintaining high performance. Moreover, this work presents experiments in computer vision tasks to illustrate how uncertainty-aware pruning is a useful approach to deploy sparse neural networks safely.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.