Multi-agent Off-policy Actor-Critic Reinforcement Learning for Partially Observable Environments

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.04974v1 Announce Type: new
Abstract: This study proposes the use of a social learning method to estimate a global state within a multi-agent off-policy actor-critic algorithm for reinforcement learning (RL) operating in a partially observable environment. We assume that the network of agents operates in a fully-decentralized manner, possessing the capability to exchange variables with their immediate neighbors. The proposed design methodology is supported by an analysis demonstrating that the difference between final outcomes, obtained when the global state is fully observed versus estimated through the social learning method, is $varepsilon$-bounded when an appropriate number of iterations of social learning updates are implemented. Unlike many existing dec-POMDP-based RL approaches, the proposed algorithm is suitable for model-free multi-agent reinforcement learning as it does not require knowledge of a transition model. Furthermore, experimental results illustrate the efficacy of the algorithm and demonstrate its superiority over the current state-of-the-art methods.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.