11
Jun
arXiv:2406.04569v1 Announce Type: new Abstract: As space missions aim to explore increasingly hazardous terrain, accurate and timely position estimates are required to ensure safe navigation. Vision-based navigation achieves this goal through correlating impact craters visible through onboard imagery with a known database to estimate a craft's pose. However, existing literature has not sufficiently evaluated crater-detection algorithm (CDA) performance from imagery containing off-nadir view angles. In this work, we evaluate the performance of Mask R-CNN for crater detection, comparing models pretrained on simulated data containing off-nadir view angles and to pretraining on real-lunar images. We demonstrate pretraining on real-lunar images is…