22
May
arXiv:2405.12247v1 Announce Type: new Abstract: In real-world applications of human pose estimation, low-resolution input images are frequently encountered when the performance of the image acquisition equipment is limited or the shooting distance is too far. However, existing state-of-the-art models for human pose estimation perform poorly on low-resolution images. One key reason is the presence of downsampling layers in these models, e.g., strided convolutions and pooling layers. It further reduces the already insufficient image information. Another key reason is that the body skeleton and human kinematic information are not fully utilized. In this work, we propose a Multi-Granular Information-Lossless (MGIL) model…