07
Aug
arXiv:2408.03062v1 Announce Type: new Abstract: Understanding how language and linguistic constructions are processed in the brain is a fundamental question in cognitive computational neuroscience. In this study, we explore the representation and processing of Argument Structure Constructions (ASCs) in a recurrent neural language model. We trained a Long Short-Term Memory (LSTM) network on a custom-made dataset consisting of 2000 sentences, generated using GPT-4, representing four distinct ASCs: transitive, ditransitive, caused-motion, and resultative constructions. We analyzed the internal activations of the LSTM model's hidden layers using Multidimensional Scaling (MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize the sentence representations. The…