10
Jul
arXiv:2407.04996v1 Announce Type: new Abstract: This paper presents a data-free, parameter-isolation-based continual learning algorithm we developed for the sequential task continual learning track of the 2nd Greater Bay Area International Algorithm Competition. The method learns an independent parameter subspace for each task within the network's convolutional and linear layers and freezes the batch normalization layers after the first task. Specifically, for domain incremental setting where all domains share a classification head, we freeze the shared classification head after first task is completed, effectively solving the issue of catastrophic forgetting. Additionally, facing the challenge of domain incremental settings without providing a…