09
Aug
arXiv:2408.04103v1 Announce Type: new Abstract: How can we define visual sentiment when viewers systematically disagree on their perspectives? This study introduces a novel approach to visual sentiment analysis by integrating attitudinal differences into visual sentiment classification. Recognizing that societal divides, such as partisan differences, heavily influence sentiment labeling, we developed a dataset that reflects these divides. We then trained a deep learning multi-task multi-class model to predict visual sentiment from different ideological viewpoints. Applied to immigration-related images, our approach captures perspectives from both Democrats and Republicans. By incorporating diverse perspectives into the labeling and model training process, our strategy addresses…