07
Aug
arXiv:2408.02976v1 Announce Type: new Abstract: Empathetic response generation, aiming at understanding the user's situation and feelings and respond empathically, is crucial in building human-like dialogue systems. Previous methods mainly focus on using maximum likelihood estimation as the optimization objective for training response generation models, without taking into account the empathy level alignment between generated responses and target responses. To this end, we propose an empathetic response generation using reinforcement learning (EmpRL) framework. The framework designs an effective empathy reward function and generates empathetic responses by maximizing the expected reward through reinforcement learning. Given the powerful text generation capability of pre-trained…