09
Aug
arXiv:2408.04150v1 Announce Type: new Abstract: In computer vision, traditional ensemble learning methods exhibit either a low training efficiency or the limited performance to enhance the reliability of deep neural networks. In this paper, we propose a lightweight, loss-function-free, and architecture-agnostic ensemble learning by the Decorrelating Structure via Adapters (DSA) for various visual tasks. Concretely, the proposed DSA leverages the structure-diverse adapters to decorrelate multiple prediction heads without any tailed regularization or loss. This allows DSA to be easily extensible to architecture-agnostic networks for a range of computer vision tasks. Importantly, the theoretically analysis shows that the proposed DSA has a…