Grouped Discrete Representation Guides Object-Centric Learning

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.01726v1 Announce Type: new
Abstract: Similar to humans perceiving visual scenes as objects, Object-Centric Learning (OCL) can abstract dense images or videos into sparse object-level features. Transformer-based OCL handles complex textures well due to the decoding guidance of discrete representation, obtained by discretizing noisy features in image or video feature maps using template features from a codebook. However, treating features as minimal units overlooks their composing attributes, thus impeding model generalization; indexing features with natural numbers loses attribute-level commonalities and characteristics, thus diminishing heuristics for model convergence. We propose textit{Grouped Discrete Representation} (GDR) to address these issues by grouping features into attributes and indexing them with tuple numbers. In extensive experiments across different query initializations, dataset modalities, and model architectures, GDR consistently improves convergence and generalizability. Visualizations show that our method effectively captures attribute-level information in features. The source code will be available upon acceptance.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.