Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2407.00127v1 Announce Type: new
Abstract: Animal populations worldwide are rapidly declining, and a technology that can accurately count endangered species could be vital for monitoring population changes over several years. This research focused on fine-tuning object detection models for drone images to create accurate counts of animal species. Hundreds of images taken using a drone and large, openly available drone-image datasets were used to fine-tune machine learning models with the baseline YOLOv8 architecture. We trained 30 different models, with the largest having 43.7 million parameters and 365 layers, and used hyperparameter tuning and data augmentation techniques to improve accuracy. While the state-of-the-art YOLOv8 baseline had only 0.7% accuracy on a dataset of safari animals, our models had 95% accuracy on the same dataset. Finally, we deployed the models on the Jetson Orin Nano for demonstration of low-power real-time species detection for easy inference on drones.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.