Application of Multimodal Fusion Deep Learning Model in Disease Recognition

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.18546v1 Announce Type: new
Abstract: This paper introduces an innovative multi-modal fusion deep learning approach to overcome the drawbacks of traditional single-modal recognition techniques. These drawbacks include incomplete information and limited diagnostic accuracy. During the feature extraction stage, cutting-edge deep learning models including convolutional neural networks (CNN), recurrent neural networks (RNN), and transformers are applied to distill advanced features from image-based, temporal, and structured data sources. The fusion strategy component seeks to determine the optimal fusion mode tailored to the specific disease recognition task. In the experimental section, a comparison is made between the performance of the proposed multi-mode fusion model and existing single-mode recognition methods. The findings demonstrate significant advantages of the multimodal fusion model across multiple evaluation metrics.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.