Sequential Editing for Lifelong Training of Speech Recognition Models

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.17935v1 Announce Type: new
Abstract: Automatic Speech Recognition (ASR) traditionally assumes known domains, but adding data from a new domain raises concerns about computational inefficiencies linked to retraining models on both existing and new domains. Fine-tuning solely on new domain risks Catastrophic Forgetting (CF). To address this, Lifelong Learning (LLL) algorithms have been proposed for ASR. Prior research has explored techniques such as Elastic Weight Consolidation, Knowledge Distillation, and Replay, all of which necessitate either additional parameters or access to prior domain data. We propose Sequential Model Editing as a novel method to continually learn new domains in ASR systems. Different than previous methods, our approach does not necessitate access to prior datasets or the introduction of extra parameters. Our study demonstrates up to 15% Word Error Rate Reduction (WERR) over fine-tuning baseline, and superior efficiency over other LLL techniques on CommonVoice English multi-accent dataset.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.