Deep Learning Approaches for Detecting Adversarial Cyberbullying and Hate Speech in Social Networks

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.17793v1 Announce Type: new
Abstract: Cyberbullying is a significant concern intricately linked to technology that can find resolution through technological means. Despite its prevalence, technology also provides solutions to mitigate cyberbullying. To address growing concerns regarding the adverse impact of cyberbullying on individuals’ online experiences, various online platforms and researchers are actively adopting measures to enhance the safety of digital environments. While researchers persist in crafting detection models to counteract or minimize cyberbullying, malicious actors are deploying adversarial techniques to circumvent these detection methods. This paper focuses on detecting cyberbullying in adversarial attack content within social networking site text data, specifically emphasizing hate speech. Utilizing a deep learning-based approach with a correction algorithm, this paper yielded significant results. An LSTM model with a fixed epoch of 100 demonstrated remarkable performance, achieving high accuracy, precision, recall, F1-score, and AUC-ROC scores of 87.57%, 88.73%, 87.57%, 88.15%, and 91% respectively. Additionally, the LSTM model’s performance surpassed that of previous studies.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.