Vaporetto: Efficient Japanese Tokenization Based on Improved Pointwise Linear Classification

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.17185v1 Announce Type: new
Abstract: This paper proposes an approach to improve the runtime efficiency of Japanese tokenization based on the pointwise linear classification (PLC) framework, which formulates the whole tokenization process as a sequence of linear classification problems. Our approach optimizes tokenization by leveraging the characteristics of the PLC framework and the task definition. Our approach involves (1) composing multiple classifications into array-based operations, (2) efficient feature lookup with memory-optimized automata, and (3) three orthogonal pre-processing methods for reducing actual score calculation. Thus, our approach makes the tokenization speed 5.7 times faster than the current approach based on the same model without decreasing tokenization accuracy. Our implementation is available at https://github.com/daac-tools/vaporetto under the MIT or Apache-2.0 license.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.