arXiv:2406.12131v1 Announce Type: new
Abstract: We present Gram2Vec, a grammatical style embedding algorithm that embeds documents into a higher dimensional space by extracting the normalized relative frequencies of grammatical features present in the text. Compared to neural approaches, Gram2Vec offers inherent interpretability based on how the feature vectors are generated. In our demo, we present a way to visualize a mapping of authors to documents based on their Gram2Vec vectors and highlight the ability to drop or add features to view which authors make certain linguistic choices. Next, we use authorship attribution as an application to show how Gram2Vec can explain why a document is attributed to a certain author, using cosine similarities between the Gram2Vec feature vectors to calculate the distances between candidate documents and a query document.
Source link
lol