End-to-end Text-to-SQL Generation within an Analytics Insight Engine

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.12104v1 Announce Type: new
Abstract: Recent advancements in Text-to-SQL have pushed database management systems towards greater democratization of data access. Today’s language models are at the core of these advancements. They enable impressive Text-to-SQL generation as experienced in the development of Distyl AI’s Analytics Insight Engine. Its early deployment with enterprise customers has highlighted three core challenges. First, data analysts expect support with authoring SQL queries of very high complexity. Second, requests are ad-hoc and, as such, require low latency. Finally, generation requires an understanding of domain-specific terminology and practices.
The design and implementation of our Text-to-SQL generation pipeline, powered by large language models, tackles these challenges. The core tenants of our approach rely on external knowledge that we extract in a pre-processing phase, on retrieving the appropriate external knowledge at query generation time, and on decomposing SQL query generation following a hierarchical CTE-based structure. Finally, an adaptation framework leverages feedback to update the external knowledge, in turn improving query generation over time. We give an overview of our end-to-end approach and highlight the operators generating SQL during inference.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.