Cybersecurity Assessment of Smart Grid Exposure Using a Machine Learning Based Approach

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.14175v1 Announce Type: new
Abstract: Given that disturbances to the stable and normal operation of power systems have grown phenomenally, particularly in terms of unauthorized access to confidential and critical data, injection of malicious software, and exploitation of security vulnerabilities in a poorly patched software among others; then developing, as a countermeasure, an assessment solutions with machine learning capabilities to match up in real-time, with the growth and fast pace of these cyber-attacks, is not only critical to the security, reliability and safe operation of power system, but also germane to guaranteeing advanced monitoring and efficient threat detection. Using the Mississippi State University and Oak Ridge National Laboratory dataset, the study used an XGB Classifier modeling approach in machine learning to diagnose and assess power system disturbances, in terms of Attack Events, Natural Events and No-Events. As test results show, the model, in all the three sub-datasets, generally demonstrates good performance on all metrics, as it relates to accurately identifying and classifying all the three power system events.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.