AEON: Adaptive Estimation of Instance-Dependent In-Distribution and Out-of-Distribution Label Noise for Robust Learning

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.13389v1 Announce Type: new
Abstract: Robust training with noisy labels is a critical challenge in image classification, offering the potential to reduce reliance on costly clean-label datasets. Real-world datasets often contain a mix of in-distribution (ID) and out-of-distribution (OOD) instance-dependent label noise, a challenge that is rarely addressed simultaneously by existing methods and is further compounded by the lack of comprehensive benchmarking datasets. Furthermore, even though current noisy-label learning approaches attempt to find noisy-label samples during training, these methods do not aim to estimate ID and OOD noise rates to promote their effectiveness in the selection of such noisy-label samples, and they are often represented by inefficient multi-stage learning algorithms. We propose the Adaptive Estimation of Instance-Dependent In-Distribution and Out-of-Distribution Label Noise (AEON) approach to address these research gaps. AEON is an efficient one-stage noisy-label learning methodology that dynamically estimates instance-dependent ID and OOD label noise rates to enhance robustness to complex noise settings. Additionally, we introduce a new benchmark reflecting real-world ID and OOD noise scenarios. Experiments demonstrate that AEON achieves state-of-the-art performance on both synthetic and real-world datasets



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.