arXiv:2501.13252v1 Announce Type: new
Abstract: This study presents a method for exploring advancements in a specific technological domain. It combines topic modeling, expert input, and reinforcement learning (RL). The proposed approach has three key steps: (1) generate aspect-based topic models using expert-weighted keywords to emphasize critical aspects, (2) analyze similarities and entropy changes by comparing topic distributions across iterative models, and (3) refine topic selection using reinforcement learning (RL) with a modified reward function that integrates changes in topic divergence and similarity across iterations. The method is tested on quantum communication documents with a focus on advances in cryptography and security protocols. The results show the method’s effectiveness and can identify, rank, and track trends that match expert input. The framework provides a robust tool for exploring evolving technological landscapes.
Source link
lol