Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.12500v1 Announce Type: new
Abstract: The study of learning causal structure with latent variables has advanced the understanding of the world by uncovering causal relationships and latent factors, e.g., Causal Representation Learning (CRL). However, in real-world scenarios, such as those in climate systems, causal relationships are often nonparametric, dynamic, and exist among both observed variables and latent variables. These challenges motivate us to consider a general setting in which causal relations are nonparametric and unrestricted in their occurrence, which is unconventional to current methods. To solve this problem, with the aid of 3-measurement in temporal structure, we theoretically show that both latent variables and processes can be identified up to minor indeterminacy under mild assumptions. Moreover, we tackle the general nonlinear Causal Discovery (CD) from observations, e.g., temperature, as a specific task of learning independent representation, through the principle of functional equivalence. Based on these insights, we develop an estimation approach simultaneously recovering both the observed causal structure and latent causal process in a nontrivial manner. Simulation studies validate the theoretical foundations and demonstrate the effectiveness of the proposed methodology. In the experiments involving climate data, this approach offers a powerful and in-depth understanding of the climate system.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.