The potential — and the pitfalls — of using pre-trained language models as cognitive science theories

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.12651v1 Announce Type: new
Abstract: Many studies have evaluated the cognitive alignment of Pre-trained Language Models (PLMs), i.e., their correspondence to adult performance across a range of cognitive domains. Recently, the focus has expanded to the developmental alignment of these models: identifying phases during training where improvements in model performance track improvements in children’s thinking over development. However, there are many challenges to the use of PLMs as cognitive science theories, including different architectures, different training data modalities and scales, and limited model interpretability. In this paper, we distill lessons learned from treating PLMs, not as engineering artifacts but as cognitive science and developmental science models. We review assumptions used by researchers to map measures of PLM performance to measures of human performance. We identify potential pitfalls of this approach to understanding human thinking, and we end by enumerating criteria for using PLMs as credible accounts of cognition and cognitive development.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.