Off-policy Evaluation for Payments at Adyen

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.10470v1 Announce Type: new
Abstract: This paper demonstrates the successful application of Off-Policy Evaluation (OPE) to accelerate recommender system development and optimization at Adyen, a global leader in financial payment processing. Facing the limitations of traditional A/B testing, which proved slow, costly, and often inconclusive, we integrated OPE to enable rapid evaluation of new recommender system variants using historical data. Our analysis, conducted on a billion-scale dataset of transactions, reveals a strong correlation between OPE estimates and online A/B test results, projecting an incremental 9–54 million transactions over a six-month period. We explore the practical challenges and trade-offs associated with deploying OPE in a high-volume production environment, including leveraging exploration traffic for data collection, mitigating variance in importance sampling, and ensuring scalability through the use of Apache Spark. By benchmarking various OPE estimators, we provide guidance on their effectiveness and integration into the decision-making systems for large-scale industrial payment systems.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.