Sparse Binary Representation Learning for Knowledge Tracing

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.09893v1 Announce Type: new
Abstract: Knowledge tracing (KT) models aim to predict students’ future performance based on their historical interactions. Most existing KT models rely exclusively on human-defined knowledge concepts (KCs) associated with exercises. As a result, the effectiveness of these models is highly dependent on the quality and completeness of the predefined KCs. Human errors in labeling and the cost of covering all potential underlying KCs can limit model performance.
In this paper, we propose a KT model, Sparse Binary Representation KT (SBRKT), that generates new KC labels, referred to as auxiliary KCs, which can augment the predefined KCs to address the limitations of relying solely on human-defined KCs. These are learned through a binary vector representation, where each bit indicates the presence (one) or absence (zero) of an auxiliary KC. The resulting discrete representation allows these auxiliary KCs to be utilized in training any KT model that incorporates KCs. Unlike pre-trained dense embeddings, which are limited to models designed to accept such vectors, our discrete representations are compatible with both classical models, such as Bayesian Knowledge Tracing (BKT), and modern deep learning approaches.
To generate this discrete representation, SBRKT employs a binarization method that learns a sparse representation, fully trainable via stochastic gradient descent. Additionally, SBRKT incorporates a recurrent neural network (RNN) to capture temporal dynamics and predict future student responses by effectively combining the auxiliary and predefined KCs. Experimental results demonstrate that SBRKT outperforms the tested baselines on several datasets and achieves competitive performance on others. Furthermore, incorporating the learned auxiliary KCs consistently enhances the performance of BKT across all tested datasets.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.