arXiv:2501.09833v1 Announce Type: new
Abstract: Concept erasure techniques have recently gained significant attention for their potential to remove unwanted concepts from text-to-image models. While these methods often demonstrate success in controlled scenarios, their robustness in real-world applications and readiness for deployment remain uncertain. In this work, we identify a critical gap in evaluating sanitized models, particularly in terms of their performance across various concept dimensions. We systematically investigate the failure modes of current concept erasure techniques, with a focus on visually similar, binomial, and semantically related concepts. We propose that these interconnected relationships give rise to a phenomenon of concept entanglement resulting in ripple effects and degradation in image quality. To facilitate more comprehensive evaluation, we introduce EraseBENCH, a multi-dimensional benchmark designed to assess concept erasure methods with greater depth. Our dataset includes over 100 diverse concepts and more than 1,000 tailored prompts, paired with a comprehensive suite of metrics that together offer a holistic view of erasure efficacy. Our findings reveal that even state-of-the-art techniques struggle with maintaining quality post-erasure, indicating that these approaches are not yet ready for real-world deployment. This highlights the gap in reliability of the concept erasure techniques.
Source link
lol