Attention based Bidirectional GRU hybrid model for inappropriate content detection in Urdu language

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.09722v1 Announce Type: cross
Abstract: With the increased use of the internet and social networks for online discussions, the spread of toxic and inappropriate content on social networking sites has also increased. Several studies have been conducted in different languages. However, there is less work done for South Asian languages for inappropriate content identification using deep learning techniques. In Urdu language, the spellings are not unique, and people write different common spellings for the same word, while mixing it other languages, like English in the text makes it more challenging, and limited research work is available to process such language with the finest algorithms. The use of attention layer with a deep learning model can help handling the long-term dependencies and increase its efficiency . To explore the effects of the attention layer, this study proposes attention-based Bidirectional GRU hybrid model for identifying inappropriate content in Urdu Unicode text language. Four different baseline deep learning models; LSTM, Bi-LSTM, GRU, and TCN, are used to compare the performance of the proposed model. The results of these models were compared based on evaluation metrics, dataset size, and impact of the word embedding layer. The pre-trained Urdu word2Vec embeddings were utilized for our case. Our proposed model BiGRU-A outperformed all other baseline models by yielding 84% accuracy without using pre-trained word2Vec layer. From our experiments, we have established that the attention layer improves the model’s efficiency, and pre-trained word2Vec embedding does not work well with an inappropriate content dataset.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.