Spatio-Temporal Foundation Models: Vision, Challenges, and Opportunities

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.09045v1 Announce Type: new
Abstract: Foundation models have revolutionized artificial intelligence, setting new benchmarks in performance and enabling transformative capabilities across a wide range of vision and language tasks. However, despite the prevalence of spatio-temporal data in critical domains such as transportation, public health, and environmental monitoring, spatio-temporal foundation models (STFMs) have not yet achieved comparable success. In this paper, we articulate a vision for the future of STFMs, outlining their essential characteristics and the generalization capabilities necessary for broad applicability. We critically assess the current state of research, identifying gaps relative to these ideal traits, and highlight key challenges that impede their progress. Finally, we explore potential opportunities and directions to advance research towards the aim of effective and broadly applicable STFMs.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.