Weight Averaging for Out-of-Distribution Generalization and Few-Shot Domain Adaptation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.08361v1 Announce Type: new
Abstract: Empirical risk minimization (ERM) is not robust to changes in the distribution of data. When the distribution of test data is different from that of training data, the problem is known as out-of-distribution generalization. Recently, two techniques have been developed for addressing out-of-distribution generalization in computer vision: weight averaging (WA) and sharpness-aware minimization (SAM). WA involves training multiple models with different hyperparameters and then averaging the weights of these models, which can significantly improve out-of-distribution generalization performance. SAM optimizes a neural network to find minima in flat regions, which have been proven to perform well under distribution shifts. While these techniques have made great progress, there is still room for improvement and further exploration. In this thesis, we propose increasing the model diversity in WA explicitly by introducing gradient similarity as a loss regularizer to further improve out-of-distribution generalization performance. We also propose combining WA and SAM to solve the problem of few-shot domain adaptation. Our extensive experiments on digits datasets (MNIST, SVHN, USPS, MNIST-M) and other domain adaptation datasets (VLCS, PACS) show that combining WA and SAM leads to improved out-of-distribution generalization performance and significantly increases few-shot domain adaptation accuracy.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.