Early Detection of Misinformation for Infodemic Management: A Domain Adaptation Approach

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.10238v1 Announce Type: new
Abstract: An infodemic refers to an enormous amount of true information and misinformation disseminated during a disease outbreak. Detecting misinformation at the early stage of an infodemic is key to manage it and reduce its harm to public health. An early stage infodemic is characterized by a large volume of unlabeled information concerning a disease. As a result, conventional misinformation detection methods are not suitable for this misinformation detection task because they rely on labeled information in the infodemic domain to train their models. To address the limitation of conventional methods, state-of-the-art methods learn their models using labeled information in other domains to detect misinformation in the infodemic domain. The efficacy of these methods depends on their ability to mitigate both covariate shift and concept shift between the infodemic domain and the domains from which they leverage labeled information. These methods focus on mitigating covariate shift but overlook concept shift, rendering them less effective for the task. In response, we theoretically show the necessity of tackling both covariate shift and concept shift as well as how to operationalize each of them. Built on the theoretical analysis, we develop a novel misinformation detection method that addresses both covariate shift and concept shift. Using two real-world datasets, we conduct extensive empirical evaluations to demonstrate the superior performance of our method over state-of-the-art misinformation detection methods as well as prevalent domain adaptation methods that can be tailored to solve the misinformation detection task.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.