Generative Flow Networks: Theory and Applications to Structure Learning

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.05498v1 Announce Type: new
Abstract: Without any assumptions about data generation, multiple causal models may explain our observations equally well. To avoid selecting a single arbitrary model that could result in unsafe decisions if it does not match reality, it is therefore essential to maintain a notion of epistemic uncertainty about our possible candidates. This thesis studies the problem of structure learning from a Bayesian perspective, approximating the posterior distribution over the structure of a causal model, represented as a directed acyclic graph (DAG), given data. It introduces Generative Flow Networks (GFlowNets), a novel class of probabilistic models designed for modeling distributions over discrete and compositional objects such as graphs. They treat generation as a sequential decision making problem, constructing samples of a target distribution defined up to a normalization constant piece by piece. In the first part of this thesis, we present the mathematical foundations of GFlowNets, their connections to existing domains of machine learning and statistics such as variational inference and reinforcement learning, and their extensions beyond discrete problems. In the second part of this thesis, we show how GFlowNets can approximate the posterior distribution over DAG structures of causal Bayesian Networks, along with the parameters of its causal mechanisms, given observational and experimental data.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.