View a PDF of the paper titled ReCLIP++: Learn to Rectify the Bias of CLIP for Unsupervised Semantic Segmentation, by Jingyun Wang and Guoliang Kang
Abstract:Recent works utilize CLIP to perform the challenging unsupervised semantic segmentation task where only images without annotations are available. However, we observe that when adopting CLIP to such a pixel-level understanding task, unexpected bias (including class-preference bias and space-preference bias) occurs. Previous works don’t explicitly model the bias, which largely constrains the segmentation performance. In this paper, we propose to explicitly model and rectify the bias existing in CLIP to facilitate the unsupervised semantic segmentation task. Specifically, we design a learnable “Reference” prompt to encode class-preference bias and a projection of the positional embedding in the vision transformer to encode space-preference bias respectively. To avoid interference, two kinds of biases are firstly independently encoded into different features, i.e., the Reference feature and the positional feature. Via a matrix multiplication between the Reference feature and the positional feature, a bias logit map is generated to explicitly represent two kinds of biases. Then we rectify the logits of CLIP via a simple element-wise subtraction. To make the rectified results smoother and more contextual, we design a mask decoder which takes the feature of CLIP and the rectified logits as input and outputs a rectified segmentation mask with the help of Gumbel-Softmax operation. A contrastive loss based on the masked visual features and the text features of different classes is imposed, which makes the bias modeling and rectification process meaningful and effective. Extensive experiments on various benchmarks including PASCAL VOC, PASCAL Context, ADE20K, Cityscapes, and COCO Stuff demonstrate that our method performs favorably against previous state-of-the-arts. The implementation is available at: this https URL.
Submission history
From: Jingyun Wang [view email]
[v1]
Tue, 13 Aug 2024 09:10:48 UTC (7,337 KB)
[v2]
Wed, 8 Jan 2025 13:49:54 UTC (4,157 KB)
Source link
lol