Explainable Time Series Prediction of Tyre Energy in Formula One Race Strategy

Every’s Master Plan



arXiv:2501.04067v1 Announce Type: new
Abstract: Formula One (F1) race strategy takes place in a high-pressure and fast-paced environment where split-second decisions can drastically affect race results. Two of the core decisions of race strategy are when to make pit stops (i.e. replace the cars’ tyres) and which tyre compounds (hard, medium or soft, in normal conditions) to select. The optimal pit stop decisions can be determined by estimating the tyre degradation of these compounds, which in turn can be computed from the energy applied to each tyre, i.e. the tyre energy. In this work, we trained deep learning models, using the Mercedes-AMG PETRONAS F1 team’s historic race data consisting of telemetry, to forecast tyre energies during races. Additionally, we fitted XGBoost, a decision tree-based machine learning algorithm, to the same dataset and compared the results, with both giving impressive performance. Furthermore, we incorporated two different explainable AI methods, namely feature importance and counterfactual explanations, to gain insights into the reasoning behind the forecasts. Our contributions thus result in an explainable, automated method which could assist F1 teams in optimising their race strategy.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.