Spot Risks Before Speaking! Unraveling Safety Attention Heads in Large Vision-Language Models

Briefing: Meta’s AI Slop, Spotify ghost music and the end of SaaS pricing as we know it?



arXiv:2501.02029v1 Announce Type: new
Abstract: With the integration of an additional modality, large vision-language models (LVLMs) exhibit greater vulnerability to safety risks (e.g., jailbreaking) compared to their language-only predecessors. Although recent studies have devoted considerable effort to the post-hoc alignment of LVLMs, the inner safety mechanisms remain largely unexplored. In this paper, we discover that internal activations of LVLMs during the first token generation can effectively identify malicious prompts across different attacks. This inherent safety perception is governed by sparse attention heads, which we term “safety heads.” Further analysis reveals that these heads act as specialized shields against malicious prompts; ablating them leads to higher attack success rates, while the model’s utility remains unaffected. By locating these safety heads and concatenating their activations, we construct a straightforward but powerful malicious prompt detector that integrates seamlessly into the generation process with minimal extra inference overhead. Despite its simple structure of a logistic regression model, the detector surprisingly exhibits strong zero-shot generalization capabilities. Experiments across various prompt-based attacks confirm the effectiveness of leveraging safety heads to protect LVLMs. Code is available at url{https://github.com/Ziwei-Zheng/SAHs}.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.