View a PDF of the paper titled Cross-View Geo-Localization with Street-View and VHR Satellite Imagery in Decentrality Settings, by Panwang Xia and 14 other authors
Abstract:Cross-View Geo-Localization tackles the challenge of image geo-localization in GNSS-denied environments, including disaster response scenarios, urban canyons, and dense forests, by matching street-view query images with geo-tagged aerial-view reference images. However, current research often relies on benchmarks and methods that assume center-aligned settings or account for only limited decentrality, which we define as the offset of the query image relative to the reference image center. Such assumptions fail to reflect real-world scenarios, where reference databases are typically pre-established without the possibility of ensuring perfect alignment for each query image. Moreover, decentrality is a critical factor warranting deeper investigation, as larger decentrality can substantially improve localization efficiency but comes at the cost of declines in localization accuracy. To address this limitation, we introduce DReSS (Decentrality Related Street-view and Satellite-view dataset), a novel dataset designed to evaluate cross-view geo-localization with a large geographic scope and diverse landscapes, emphasizing the decentrality issue. Meanwhile, we propose AuxGeo (Auxiliary Enhanced Geo-Localization) to further study the decentrality issue, which leverages a multi-metric optimization strategy with two novel modules: the Bird’s-eye view Intermediary Module (BIM) and the Position Constraint Module (PCM). These modules improve the localization accuracy despite the decentrality problem. Extensive experiments demonstrate that AuxGeo outperforms previous methods on our proposed DReSS dataset, mitigating the issue of large decentrality, and also achieves state-of-the-art performance on existing public datasets such as CVUSA, CVACT, and VIGOR.
Submission history
From: Panwang Xia [view email]
[v1]
Mon, 16 Dec 2024 08:07:53 UTC (17,773 KB)
[v2]
Fri, 3 Jan 2025 03:48:03 UTC (17,653 KB)
Source link
lol