Detection-Fusion for Knowledge Graph Extraction from Videos

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2501.00136v1 Announce Type: new
Abstract: One of the challenging tasks in the field of video understanding is extracting semantic content from video inputs. Most existing systems use language models to describe videos in natural language sentences, but this has several major shortcomings. Such systems can rely too heavily on the language model component and base their output on statistical regularities in natural language text rather than on the visual contents of the video. Additionally, natural language annotations cannot be readily processed by a computer, are difficult to evaluate with performance metrics and cannot be easily translated into a different natural language. In this paper, we propose a method to annotate videos with knowledge graphs, and so avoid these problems. Specifically, we propose a deep-learning-based model for this task that first predicts pairs of individuals and then the relations between them. Additionally, we propose an extension of our model for the inclusion of background knowledge in the construction of knowledge graphs.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.