arXiv:2412.20223v1 Announce Type: new
Abstract: This paper introduces AfriHG — a news headline generation dataset created by combining from XLSum and MasakhaNEWS datasets focusing on 16 languages widely spoken by Africa. We experimented with two seq2eq models (mT5-base and AfriTeVa V2), and Aya-101 LLM. Our results show that Africa-centric seq2seq models such as AfriTeVa V2 outperform the massively multilingual mT5-base model. Finally, we show that the performance of fine-tuning AfriTeVa V2 with 313M parameters is competitive to prompting Aya-101 LLM with more than 13B parameters.
Source link
lol