DynaGRAG: Improving Language Understanding and Generation through Dynamic Subgraph Representation in Graph Retrieval-Augmented Generation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.18644v1 Announce Type: new
Abstract: Graph Retrieval-Augmented Generation (GRAG or Graph RAG) architectures aim to enhance language understanding and generation by leveraging external knowledge. However, effectively capturing and integrating the rich semantic information present in textual and structured data remains a challenge. To address this, a novel GRAG framework is proposed to focus on enhancing subgraph representation and diversity within the knowledge graph. By improving graph density, capturing entity and relation information more effectively, and dynamically prioritizing relevant and diverse subgraphs, the proposed approach enables a more comprehensive understanding of the underlying semantic structure. This is achieved through a combination of de-duplication processes, two-step mean pooling of embeddings, query-aware retrieval considering unique nodes, and a Dynamic Similarity-Aware BFS (DSA-BFS) traversal algorithm. Integrating Graph Convolutional Networks (GCNs) and Large Language Models (LLMs) through hard prompting further enhances the learning of rich node and edge representations while preserving the hierarchical subgraph structure. Experimental results on multiple benchmark datasets demonstrate the effectiveness of the proposed GRAG framework, showcasing the significance of enhanced subgraph representation and diversity for improved language understanding and generation.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.