Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey

Evaluating Classification Models: Metrics, Techniques & Best Practices


View a PDF of the paper titled Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey, by Yang Gu and 5 other authors

View PDF
HTML (experimental)

Abstract:Building effective machine learning (ML) workflows to address complex tasks is a primary focus of the Automatic ML (AutoML) community and a critical step toward achieving artificial general intelligence (AGI). Recently, the integration of Large Language Models (LLMs) into ML workflows has shown great potential for automating and enhancing various stages of the ML pipeline. This survey provides a comprehensive and up-to-date review of recent advancements in using LLMs to construct and optimize ML workflows, focusing on key components encompassing data and feature engineering, model selection and hyperparameter optimization, and workflow evaluation. We discuss both the advantages and limitations of LLM-driven approaches, emphasizing their capacity to streamline and enhance ML workflow modeling process through language understanding, reasoning, interaction, and generation. Finally, we highlight open challenges and propose future research directions to advance the effective application of LLMs in ML workflows.

Submission history

From: Yang Gu [view email]
[v1]
Mon, 11 Nov 2024 21:54:26 UTC (661 KB)
[v2]
Wed, 25 Dec 2024 16:38:51 UTC (497 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.