Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.16359v1 Announce Type: new
Abstract: Previous research on LLM vulnerabilities often relied on nonsensical adversarial prompts, which were easily detectable by automated methods. We address this gap by focusing on human-readable adversarial prompts, a more realistic and potent threat. Our key contributions are situation-driven attacks leveraging movie scripts to create contextually relevant, human-readable prompts that successfully deceive LLMs, adversarial suffix conversion to transform nonsensical adversarial suffixes into meaningful text, and AdvPrompter with p-nucleus sampling, a method to generate diverse, human-readable adversarial suffixes, improving attack efficacy in models like GPT-3.5 and Gemma 7B. Our findings demonstrate that LLMs can be tricked by sophisticated adversaries into producing harmful responses with human-readable adversarial prompts and that there exists a scope for improvement when it comes to robust LLMs.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.