Learn and Unlearn in Multilingual LLMs

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning


View a PDF of the paper titled Learn and Unlearn in Multilingual LLMs, by Taiming Lu and 1 other authors

View PDF
HTML (experimental)

Abstract:This paper investigates the propagation of harmful information in multilingual large language models (LLMs) and evaluates the efficacy of various unlearning methods. We demonstrate that fake information, regardless of the language it is in, once introduced into these models through training data, can spread across different languages, compromising the integrity and reliability of the generated content. Our findings reveal that standard unlearning techniques, which typically focus on English data, are insufficient in mitigating the spread of harmful content in multilingual contexts and could inadvertently reinforce harmful content across languages. We show that only by addressing harmful responses in both English and the original language of the harmful data can we effectively eliminate generations for all languages. This underscores the critical need for comprehensive unlearning strategies that consider the multilingual nature of modern LLMs to enhance their safety and reliability across diverse linguistic landscapes.

Submission history

From: TaiMing Lu [view email]
[v1]
Wed, 19 Jun 2024 18:01:08 UTC (10,389 KB)
[v2]
Fri, 13 Dec 2024 06:55:46 UTC (1,245 KB)



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.