EGEAN: An Exposure-Guided Embedding Alignment Network for Post-Click Conversion Estimation

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2412.06852v1 Announce Type: new
Abstract: Accurate post-click conversion rate (CVR) estimation is crucial for online advertising systems. Despite significant advances in causal approaches designed to address the Sample Selection Bias problem, CVR estimation still faces challenges due to Covariate Shift. Given the intrinsic connection between the distribution of covariates in the click and non-click spaces, this study proposes an Exposure-Guided Embedding Alignment Network (EGEAN) to address estimation bias caused by covariate shift. Additionally, we propose a Parameter Varying Doubly Robust Estimator with steady-state control to handle small propensities better. Online A/B tests conducted on the Meituan advertising system demonstrate that our method significantly outperforms baseline models with respect to CVR and GMV, validating its effectiveness. Code is available: https://github.com/hydrogen-maker/EGEAN.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.