Graphical Perception of Saliency-based Model Explanations

AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning



arXiv:2406.07702v1 Announce Type: new
Abstract: In recent years, considerable work has been devoted to explaining predictive, deep learning-based models, and in turn how to evaluate explanations. An important class of evaluation methods are ones that are human-centered, which typically require the communication of explanations through visualizations. And while visualization plays a critical role in perceiving and understanding model explanations, how visualization design impacts human perception of explanations remains poorly understood. In this work, we study the graphical perception of model explanations, specifically, saliency-based explanations for visual recognition models. We propose an experimental design to investigate how human perception is influenced by visualization design, wherein we study the task of alignment assessment, or whether a saliency map aligns with an object in an image. Our findings show that factors related to visualization design decisions, the type of alignment, and qualities of the saliency map all play important roles in how humans perceive saliency-based visual explanations.



Source link
lol

By stp2y

Leave a Reply

Your email address will not be published. Required fields are marked *

No widgets found. Go to Widget page and add the widget in Offcanvas Sidebar Widget Area.